Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Solution
We need to prove `(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Using the property `cos^2 theta + sin^2 theta = 1` we get
LHS = `(1 + cos A)/sin^2 A = (1 + cos A)/(1 - cos^2 A)`
Further using the identity, `a^2 - b^2 = (a + b)(a - b)` we get
`(1 + cos A)/(1 - cos A) = (1 + cos A)/((1 - cos A)(1 + cos A))`
`= 1/(1 - cos A)`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If tanθ `= 3/4` then find the value of secθ.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Choose the correct alternative:
cos θ. sec θ = ?
Prove that `(tan(90 - theta) + cot(90 - theta))/("cosec" theta)` = sec θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`