मराठी

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: sinθ-2sin3θ2cos3θ-cosθ=tanθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`

Prove that `(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`

बेरीज

उत्तर

L.H.S = `(sin theta-2sin^3theta)/(2cos^3theta -costheta)`

= `(sintheta(1-sin^2theta))/(costheta(2cos^2theta-1))`

= `(sinthetaxx(1-2sin^2theta))/(costhetaxx{2(1-sin^2theta)-1})`

= `(sin thetaxx(1-2sin^2theta))/(costhetaxx(1-2sin^2theta))`

= `tantheta` 

= R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.4 [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.4 | Q 5.07 | पृष्ठ १९४

संबंधित प्रश्‍न

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


 

Evaluate

`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`

 

Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities.

sec A (1 − sin A) (sec A + tan A) = 1


Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


Prove the following identities:

`cosA/(1 - sinA) = sec A + tan A`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


`cos^2 theta + 1/((1+ cot^2 theta )) =1`

     


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


If `secθ = 25/7 ` then find tanθ.


Simplify : 2 sin30 + 3 tan45.


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


 Write True' or False' and justify your answer  the following : 

The value of sin θ+cos θ is always greater than 1 .


If sec θ + tan θ = x, then sec θ =


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity : 

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Find A if tan 2A = cot (A-24°).


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove the following identities:

`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Choose the correct alternative:

sec2θ – tan2θ =?


Choose the correct alternative:

Which is not correct formula?


`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?


If 1 – cos2θ = `1/4`, then θ = ?


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


If 2sin2β − cos2β = 2, then β is ______.


`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×