Advertisements
Advertisements
Questions
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove that `(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Solution
L.H.S = `(sin theta-2sin^3theta)/(2cos^3theta -costheta)`
= `(sintheta(1-sin^2theta))/(costheta(2cos^2theta-1))`
= `(sinthetaxx(1-2sin^2theta))/(costhetaxx{2(1-sin^2theta)-1})`
= `(sin thetaxx(1-2sin^2theta))/(costhetaxx(1-2sin^2theta))`
= `tantheta`
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
What is the value of (1 − cos2 θ) cosec2 θ?
cos4 A − sin4 A is equal to ______.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If 1 – cos2θ = `1/4`, then θ = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that `"cot A"/(1 - tan "A") + "tan A"/(1 - cot"A")` = 1 + tan A + cot A = sec A . cosec A + 1
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If tan α + cot α = 2, then tan20α + cot20α = ______.
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.