Advertisements
Advertisements
प्रश्न
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
पर्याय
ab
a2 − b2
a2 + b2
a2 b2
उत्तर
Given:
`x= a secθ, y=b tanθ`
So,
`b^2x^2-a^2 y^2`
=` b^2(a secθ)^2-a^2(btan θ)^2`
= `b^2 a^2 sec^2 θ-a^2 b^2 tan^2θ`
=` b^2 a^2 (sec^2θ-tan^2 θ)`
We know that,`
`sec^2θ-tan^2θ=1`
Therfore,
`b^2x^2-a^2y^2=a^2b^2`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
If sin A = `1/2`, then the value of sec A is ______.