मराठी

If X = a Sec θ and Y = B Tan θ, Then B2x2 − A2y2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =

पर्याय

  •  ab

  • a2 − b2

  •  a2 + b2

  • a2 b2

MCQ

उत्तर

Given:

`x= a secθ, y=b tanθ`

So,

`b^2x^2-a^2 y^2` 

=` b^2(a secθ)^2-a^2(btan θ)^2` 

= `b^2 a^2 sec^2 θ-a^2 b^2 tan^2θ`

=` b^2 a^2 (sec^2θ-tan^2 θ)`

We know that,`

`sec^2θ-tan^2θ=1`

Therfore, 

`b^2x^2-a^2y^2=a^2b^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.4 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.4 | Q 13 | पृष्ठ ५७

संबंधित प्रश्‍न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`


If m = ` ( cos theta - sin theta ) and n = ( cos theta +  sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


If sin A = `1/2`, then the value of sec A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×