Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
उत्तर
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
`sin(50^circ + θ) = cos[90^circ - (50^circ + θ)] = cos(40^circ - θ)`
`sin(50^circ + θ) - cos(40^circ - θ)`
= `cos(40^circ - θ) - cos(40^circ - θ)`
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Choose the correct alternative:
tan (90 – θ) = ?
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α