Advertisements
Advertisements
प्रश्न
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
उत्तर
=`(1+ cot^2 theta ) sin ^2 theta`
=` cosec ^2 theta xx 1/ ( cosec^2 theta)`
=1
APPEARS IN
संबंधित प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of cos1° cos 2°........cos180° .
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
(1 + sin A)(1 – sin A) is equal to ______.