Advertisements
Advertisements
Question
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Solution
Let `x/a=y/b = z/c` = k
=> x = ak, y = bk, z = ck
L.H.S = `x^3/a^3 + y^3/b^3 + z^3/c^3`
`= (ak)^3/(a^3) + (bk)^3/b^3 + (ck)^3/c^3`
`= (a^3k^3)/a^3 + (b^3k^3)/b^3 + (c^3k^3)/c^3`
`= k^3 + k^3 + k^3`
= `3k^3`
R.H.S = `(3xyz)/(abc)`
`= (3(ak)(bk)(ck))/(abc)`
`= (3(k^3)(abc))/(abc)`
`= 3k^3`
= L.H.S
=> L.H.S = R.H.S
`=> x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of cosec2 (90° − θ) − tan2 θ.
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
If A + B = 90°, show that sec2 A + sec2 B = sec2 A. sec2 B.
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ