Advertisements
Advertisements
Question
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Solution
\[\tan\theta + \frac{1}{\tan\theta} = 2\]
Squaring on both sides, we get
\[\left( \tan\theta + \frac{1}{\tan\theta} \right)^2 = 2^2 \]
\[ \Rightarrow \tan^2 \theta + \frac{1}{\tan^2 \theta} + 2 \times \tan\theta \times \frac{1}{\tan\theta} = 4\] ... (using (a + b)2 = a2 + 2ab + b2)
\[ \Rightarrow \tan^2 \theta + \frac{1}{\tan^2 \theta} + 2 = 4\]
\[ \Rightarrow \tan^2 \theta + \frac{1}{\tan^2 \theta} = 4 - 2 = 2\]
APPEARS IN
RELATED QUESTIONS
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.
If tanθ = 1 then, find the value of
`(sinθ + cosθ)/(secθ + cosecθ)`
Prove that:
Prove that:
(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Choose the correct alternative answer for the following question.
1 + tan2 \[\theta\] = ?
Prove the following.
secθ (1 – sinθ) (secθ + tanθ) = 1
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`
ΔAMT∼ΔAHE, construct Δ AMT such that MA = 6.3 cm, ∠MAT=120°, AT = 4.9 cm and `"MA"/"HA"=7/5`, then construct ΔAHE.