English

Show That: Sqrt((1-cos"A")/(1+Cos"A"))=Cos"Eca - Cota" - Geometry Mathematics 2

Advertisements
Advertisements

Question

Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`

Sum

Solution

LHS = `sqrt((1-cos"A")/(1+cos"A"))`

 

 LHS = `sqrt((1-cos"A")/(1+cos"A")xx (1-cos"A")/(1-cos"A"))`

 

 LHS = `sqrt(((1-cos"A")^2)/(1-cos^2"A"))`

 

=`sqrt(((1-cos"A")^2)/sin^2"A")`  ....(sin2A =1- cos2A)

 

 LHS = `sqrt(((1-cos"A")/sin"A")^2)`

 

 LHS = `(1-cos"A")/sin"A" = 1/sin"A" + cos"A"/sin"A"`

 

 LHS = `cos"ecA"-cot"A"` = RHS

Hence Proved

shaalaa.com
Application of Trigonometry
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

RELATED QUESTIONS

If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]


Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

1 + tan2 \[\theta\]  = ?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following:

sec6x – tan6x = 1 + 3sec2x × tan2x


Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


In ΔPQR, ∠P = 30°, ∠Q = 60°, ∠R = 90° and PQ = 12 cm, then find PR and QR.


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×