मराठी

The Sum of First 9 Terms of an A.P. is 162. the Ratio of Its 6th Term to Its 13th Term is 1 : 2. Find the First and 15th Term of the A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first 9 terms of an A.P. is 162. The ratio of its 6th term to its 13th term is 1 : 2. Find the first and 15th term of the A.P.

बेरीज

उत्तर

Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn = \[\frac{n}{2}\][2a + (n − 1)d]

Also, nth term = an = a + (n − 1)d
According to the question,
Sq = 162 and \[\frac{a_6}{a_{13}} = \frac{1}{2}\]

Now,

\[\frac{a_6}{a_{13}} = \frac{1}{2}\]

\[ \Rightarrow \frac{a + (6 - 1)d}{a + (13 - 1)d} = \frac{1}{2}\]

\[ \Rightarrow \frac{a + 5d}{a + 12d} = \frac{1}{2}\]

\[ \Rightarrow 2a + 10d = a + 12d\]

\[ \Rightarrow 2a - a = 12d - 10d\]

\[ \Rightarrow a = 2d . . . . . (1)\]

Also,
S=\[\frac{9}{2}\][2a + (9 − 1)d]

⇒ 162 = \[\frac{9}{2}\][2(2d) + 8d]           [From (1)]

⇒ 18 = \[\frac{1}{2}\] ⇒ 18 = 6d
⇒ d = 3
⇒ a = 2 × 3                              [From (1)]
⇒ a = 6

Thus, the first term of the A.P. is 6.
Now,

a15 = 6 + (15 − 1)3
     = 6 + 42
    = 48
Thus, 15th term of the A.P. is 48.

 
 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithmetic Progression - Exercise 5.6 [पृष्ठ ५२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 5 Arithmetic Progression
Exercise 5.6 | Q 28 | पृष्ठ ५२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×