Advertisements
Advertisements
प्रश्न
In an AP, given a = 2, d = 8, and Sn = 90, find n and an.
Let there be an A.P. with the first term 'a' and the common difference 'd'. If an a denotes the nth term and Sn is the sum of the first n terms, find.
n and an, if a = 2, d = 8, and Sn = 90.
उत्तर १
Given that a = 2, d = 8, and Sn = 90
`"As" S_n = n/2 [2a + (n - 1)d]`
`90 = n/2 [2xx2 + (n - 1)8]`
90 × 2 = 4n + n(11 - 1) × 8
180 = 4n + 8n2 - 8n
180 = 8n2 - 4n
45 = 2n2 - n
2n2 - n - 45 = 0
2n2 - 10n + 9n - 45 = 0
2n (n - 5) + 9(n - 5) = 0
(2n + 9) (n - 5) = 0
∴ Either 2n + 9 = 0
n = `-9/2`
or n - 5 = 0
n = 5
But n = `9/2` is not possible.
∴ n = 5
Now, an = a + (n - 1)d
a5 = 2 + (5 -1) × 8
a5 = 2 + 32
a5 = 34
Thus, n = 3 and a5 = 34
उत्तर २
Here, we have an A.P. whose first term (a), the common difference (d) and the sum of the first n terms are given. We need to find the number of terms (n) and the nth term (an).
Here,
First term (a) = 2
The sum of the first nth terms (`S_n`) = 90
Common difference (d) = 8
So, to find the number of terms (n) of this A.P., we use the following formula for the sum of n terms of an A.P
`S_n = n/2 [2a + (n - 1)d]`
Where a is the first term for the given A.P.
d = common difference of the given A.P.
n = number of terms
So, using the formula for n = 8, we get,
`S_n = n/2 [2(2) + (n-1)(8)]]`
`90 = n/2 [4 + 8n - 8]`
90(2) = n[8n - 4]
`180 = 8n^2 - 4n`
Further solving the above quadratic equation,
`8n^2 - 4n - 180 = 0`
`2n^2 - n - 45 = 0`
Further solving for n,
`2n^2 - 10n + 9n - 45 = 0`
2n(n - 5) + 9(n - 5) = 0
(2n + 9)(n - 5) = 0
Now
2n + 9 = 0
2n = -9/2
Also
n - 5 = 0
n = 5
Since n cannot be a fraction,
Thus, n = 5
Also, we will find the value of the nth term (an) using the formula `a_n = a + (n - 1)d`
So, substituting the values in the above-mentioned formula
`a_n = 2 + (5 - 1)8`
`a_n = 2 + (4)(8)`
`a_n = 2 + 32`
`a_n = 34`
Therefore, for the given A.P n = 5 and `a_n = 34`
संबंधित प्रश्न
The sum of n, 2n, 3n terms of an A.P. are S1 , S2 , S3 respectively. Prove that S3 = 3(S2 – S1 )
In an AP given a = 3, n = 8, Sn = 192, find d.
Find the sum of all integers between 84 and 719, which are multiples of 5.
The 9th term of an AP is -32 and the sum of its 11th and 13th terms is -94. Find the common difference of the AP.
If (2p – 1), 7, 3p are in AP, find the value of p.
How many terms of the AP `20, 19 1/3 , 18 2/3, ...` must be taken so that their sum is 300? Explain the double answer.
Write an A.P. whose first term is a and common difference is d in the following.
a = 6, d = –3
Find four consecutive terms in an A.P. whose sum is 12 and sum of 3rd and 4th term is 14.
(Assume the four consecutive terms in A.P. are a – d, a, a + d, a +2d)
Find the A.P. whose fourth term is 9 and the sum of its sixth term and thirteenth term is 40.
If `4/5` , a, 2 are three consecutive terms of an A.P., then find the value of a.
If the sum of three consecutive terms of an increasing A.P. is 51 and the product of the first and third of these terms is 273, then the third term is
If four numbers in A.P. are such that their sum is 50 and the greatest number is 4 times, the least, then the numbers are
If the sum of first n even natural numbers is equal to k times the sum of first n odd natural numbers, then k =
The 11th term and the 21st term of an A.P are 16 and 29 respectively, then find the first term, common difference and the 34th term.
If an = 3 – 4n, show that a1, a2, a3,... form an AP. Also find S20.
The sum of first n terms of an A.P. whose first term is 8 and the common difference is 20 equal to the sum of first 2n terms of another A.P. whose first term is – 30 and the common difference is 8. Find n.
The sum of first five multiples of 3 is ______.
k + 2, 2k + 7 and 4k + 12 are the first three terms of an A.P. The first term of this A.P. is ______.