Advertisements
Advertisements
प्रश्न
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
पर्याय
cos β
cos 2β
sin α
sin 2α
उत्तर
If cos (α + β) = 0, then sin (α – β) can be reduced to cos 2β.
Explanation:
According to the question,
cos(α + β) = 0
Since, cos 90° = 0
We can write,
cos(α + β) = cos 90°
By comparing cosine equation on L.H.S and R.H.S,
We get,
(α + β) = 90°
α = 90° – β
Now we need to reduce sin(α – β),
So, we take,
sin(α – β) = sin(90° – β – β) = sin(90° – 2β)
sin(90° – θ) = cos θ
So, sin(90° – 2β) = cos 2β
Therefore, sin(α – β) = cos 2β
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ