Advertisements
Advertisements
प्रश्न
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
उत्तर
L.H.S = `(sin^2theta)/(cos theta) + cos theta`
= `(sin^2theta + cos^2theta)/costheta`
= `1/costheta` ......[∵ sin2θ + cos2θ = 1]
= sec θ
= R.H.S
∴ `(sin^2theta)/(cos theta) + cos theta` = sec θ
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0