हिंदी

Prove that sin2θcosθ+cosθ = sec θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ

योग

उत्तर

L.H.S = `(sin^2theta)/(cos theta) + cos theta`

= `(sin^2theta + cos^2theta)/costheta`

= `1/costheta`     ......[∵ sin2θ + cos2θ = 1]

= sec θ

= R.H.S

∴ `(sin^2theta)/(cos theta) + cos theta` = sec θ

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.2 (B)

संबंधित प्रश्न

Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove the following identities:

`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×