English

Tan 5° ✕ Tan 30° ✕ 4 Tan 85° is Equal to - Mathematics

Advertisements
Advertisements

Question

tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to 

Options

  • `4/sqrt3`

  • `4sqrt3`

  • 1

  • 4

MCQ

Solution

We have to find `tan 5°xx tan 30° xx4 tan 85°` 

We know that 

`tan (90°-θ)=cot-θ` 

`tan  θ cot -θ=1` 

`tan 30°=1/sqrt3` 

so 

`tan 5° xx tan 30° xx 4 tan 85°` 

=` tan (90°-85°)xx tan 30°xx4 tan 85°` 

= `cot 85° xx tan 30°xx4 tan 85°` 

=` 4 cot 85° xx tan 85° tan 30°` 

= `4xx1xx1/sqrt3`  

= `4/sqrt3` 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Trigonometric Ratios - Exercise 10.5 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.5 | Q 32 | Page 58

RELATED QUESTIONS

If the angle θ= –60º, find the value of cosθ.


If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ


Prove the following trigonometric identities.

(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ


Prove the following trigonometric identities.

(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Evaluate:

`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`


If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]


Given 

\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]


If \[\tan \theta = \frac{3}{4}\]  then cos2 θ − sin2 θ = 


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Prove that :

tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`


Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`


Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.


In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.

cos(90° - A) · sec 77° = 1


Solve: 2cos2θ + sin θ - 2 = 0.


Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?


The value of (tan1° tan2° tan3° ... tan89°) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×