English

Prove the Following. Tan4θ + Tan2θ = Sec4θ - Sec2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ

Sum

Solution

Taking LHS

tan4θ + tan2θ

= tan2θ( tan2θ + 1)

= (sec2θ - 1)(sec2θ) [1 + tan2θ = sec2θ]

= sec4θ - sec2θ

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Problem Set 6 [Page 138]

RELATED QUESTIONS

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan A = cot B, prove that A + B = 90


if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


For triangle ABC, show that : `tan  (B + C)/2 = cot  A/2`


Prove that:

`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`


Use tables to find sine of 62° 57'


Use tables to find cosine of 9° 23’ + 15° 54’


Use tables to find the acute angle θ, if the value of sin θ is 0.3827


Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0


If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.


Write the maximum and minimum values of sin θ.


Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°. 


If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Sin 2B = 2 sin B is true when B is equal to ______.


The value of the expression (cos2 23° – sin2 67°) is positive.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×