Advertisements
Advertisements
Question
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Solution
Taking LHS
tan4θ + tan2θ
= tan2θ( tan2θ + 1)
= (sec2θ - 1)(sec2θ) [1 + tan2θ = sec2θ]
= sec4θ - sec2θ
= RHS
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan A = cot B, prove that A + B = 90
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find sine of 62° 57'
Use tables to find cosine of 9° 23’ + 15° 54’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the maximum and minimum values of sin θ.
Write the value of cos 1° cos 2° cos 3° ....... cos 179° cos 180°.
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Sin 2B = 2 sin B is true when B is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.