English

The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle. - Mathematics

Advertisements
Advertisements

Question

The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Sum

Solution

Let us consider a circle centered at point O.

AB is a tangent drawn on this circle from point A.

Given that,

OA = 5 cm and AB = 4 cm

In ΔABO,

OB ⊥ AB (Radius ⊥ tangent at the point of contact)

Applying Pythagoras theorem in ΔABO, we obtain

AB2 + BO2 = OA2

4+ BO2 = 52

16 + BO2 = 25

BO2 = 9

BO = 3

Hence, the radius of the circle is 3 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Circles - Exercise 10.2 [Page 214]

RELATED QUESTIONS

Prove that “The lengths of the two tangent segments to a circle drawn from an external point are equal.”


In the following figure, Q is the centre of a circle and PM, PN are tangent segments to the circle. If ∠MPN = 50°, find ∠MQN.


In the following figure, Q is the center of the circle. PM and PN are tangents to the circle. If ∠MPN = 40° , find ∠MQN.

 


From an external point P, tangents PA and PB are drawn to a circle with centre O. If ∠PAB = 50°, then find ∠AOB.


In the given figure, AD is a diameter. O is the centre of the circle. AD is parallel to BC and ∠CBD = 32°.

Find:

  1. ∠OBD
  2. ∠AOB
  3. ∠BED


In the given figure PA = 10, PB = 2 and PC = 5. Find PD.


PQ is a tangent drawn from an external point P to a circle with centre O, QOR is the diameter of the circle. If ∠POR = 120°, what is the measure of ∠OPQ?


A right circular cone is divided into three parts by trisecting its height by two planes drawn parallel to the base. Show that the volumes of the three portions starting from the top are in the ratio 1 : 7 : 19 ?


Find the area of the shaded region in Fig. 8, where \\

\[\overbrace{APD}\],\[\overbrace{AQB}\],\[\overbrace{BRC}\] and \[\overbrace{CSD}\] are semi-circles of diameter 14 cm, 3.5 cm, 7 cm and 3.5 cm respectively.\[\left[ Use \pi = \frac{22}{7} \right]\]

In Figure 1, a quadrilateral ABCD is drawn to circumscribe a circle such that its sides AB, BC, CD and AD touch the circle at P, Q, R and S respectively. If AB = x cm, BC = 7 cm, CR = 3 cm and AS = 5 cm, find x.

(A) 10
(B) 9
(C) 8
(D) 7


In fig. 6, l and m are two parallel tangents to a circle with centre O, touching the circle at A and B respectively. Another tangent at C intersects the line l at D and m at E. Prove that ∠DOE = 90° ?


In the figure given below, O is the center of the circle and SP is a tangent. If ∠SRT = 65°, find the value of x, y and Z.


In the given figure, PQ is a tangent to the circle at A. AB and AD are bisectors of ∠CAQ and ∠PAC. If ∠BAQ = 30°, prove that : BD is diameter of the circle.


In the following figure, Q is the centre of a circle and PM, PN are tangent segments to the circle. If ∠MPN = 60°, find ∠MQN.


In the given figure, ▢ABCD is a parallelogram. It circumscribes the circle with centre T. Point E, F, G, H are touching points. If AE = 4.5, EB = 5.5, find AD.


ln Figure, PQ is a chord of length 8 cm of a circle of radius 5 cm and centre O. The tangents at P and Q intersect at point T. find the length of TP.


In Fig. 4, a circle is inscribed in a ΔABC having sides BC = 8 cm, AB = 10 cm and AC = 12 cm. Find the lengths BL, CM and AN.


The number of tangents drawn at a point of the circle is/are ______ 


The length of a tangent drawn from a point at a distance of 10 cm of the circle is 8 cm. The radius of the circle is ______ 


In the given figure, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 6 cm then the length of BR is ______


The length of the tangent from an external point P on a circle with centre O is ______ 


The length of the tangent from an external point on a circle is ______ 


In a circle of radius 17 cm, two parallel chords are drawn on opposite sides of a diameter. The distance between the chords is 23 cm. If the length of one chord is 16 cm, then the length of the other is ______ 


The angle between two tangents to a circle may be 0°.


Two tangents PQ and PR are drawn from an external point to a circle with centre O. Prove that QORP is a cyclic quadrilateral.


If from an external point B of a circle with centre O, two tangents BC and BD are drawn such that ∠DBC = 120°, prove that BC + BD = BO, i.e., BO = 2BC.


In the given figure, O is the centre of circle. Find ∠AQB, given that PA and PB are tangents to the circle and ∠APB = 75°.


Draw two concentric circles of radii 2 cm and 3 cm. From a point on the outer circle, construct a pair of tangents to the inner circle.


In the given figure, if a circle touches the side QR of ΔPQR at S and extended sides PQ and PR at M and N, respectively, then prove that PM = `1/2` (PQ + QR + PR)


In the given figure, perimeter of ΔPQR is 20 cm. Find the length of tangent PA.


PA and PB are tangents drawn to the circle with centre O as shown in the figure. Prove that ∠APB = 2∠OAB.


PA and PB are tangents drawn to a circle of centre O from an external point P. Chord AB makes an angle of 30° with the radius at the point of contact. If length of the chord is 6 cm, find the length of the tangent PA and the length of the radius OA.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×