Advertisements
Advertisements
Question
`(sin 40° + cos 50°)/(tan 38°20')`
Solution
`(sin 40° + cos 50°)/(tan 38°20')`
= `(0.6428 + 0.6428)/(0.7907)`
= `(1.2856)/(0.7907)`
= 1.6259.
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
If sec2A = cosec(A - 42°), where 2A is an acute angle, then find the value of A.
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'
The maximum value of `1/(cosec alpha)` is ______.