Advertisements
Advertisements
Question
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Solution
LHS = `(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ`
`=("sin"70^circ)/(sin(90^circ - 20^circ)) + (sec(90^circ-20^circ))/sec 70^circ - 2 cos 70^circ sec(90^circ-20^circ)`
`= 1 + 1 - 2 xxcos 70^circxx1/cos 70^circ`
= 2 - 2
= 0
= RHS
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, prove that:
sin248° + sin242° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
`cos 80^circ/(sin 10^circ) + cos 59^circ "cosec" 31^circ = 2`
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If A, B and C are the angles of a ΔABC, prove that tan `((C + "A")/2) = cot B/2`
From trigonometric table, write the values of sin 37°19'.
`(sin 40° + cos 50°)/(tan 38°20')`
The length of a shadow of a tower standing on a level plane is found to be 2y meters longer when the seen's altitude is 30° than when it was 45° prove that the height of the tower is y ( √3 + 1 ) meter.
The maximum value of `1/(cosec alpha)` is ______.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.