English

Prove that (Sin "A" - Cos "A" + 1)/(Sin "A" + Cos "A" - 1) = 1/(Sec "A" - Tan "A") - Mathematics

Advertisements
Advertisements

Question

Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`

Sum

Solution

L.H.S = `(sin"A" - cos "A" + 1)/(sin "A" + cos "A" - 1)`

`= (tan "A" -1 + sec"A")/(tan "A" + 1 - sec "A")`   [Dividing numerator & denominator by cos A]

`= ((tan "A" + sec "A") -1)/((tan "A" - sec "A") + 1)`

`= ((tan "A" + sec"A") - 1(tan"A" - sec "A"))/((tan "A" + sec"A") + 1(tan"A" - sec "A"))`

`= ((tan^2 "A" + sec^2 "A") - (tan "A" - sec "A"))/ ((tan "A" + sec "A" + 1) - (tan "A" - sec "A"))`

`= (-1 - tan "A" + sec "A")/((tan "A" - sec "A" + 1)(tan "A" - sec "A"))`

`= -1/(tan "A" - sec "A")`

`= 1/(sec "A" - tan "A")`

LHS = RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 30/1/1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Without using trigonometric tables, evaluate :

`sec 11^circ/("cosec"  79^circ)`


Without using trigonometric tables, evaluate :

`tan 27^circ/cot 63^circ`


Without using trigonometric tables, evaluate :

`cos 35^circ/sin 55^circ`


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Prove that:

`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ  tan50^circ tan 80^circ) `


Prove that:

\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


From the trigonometric table, write the values of cos 23°17'.


`(sin 40° + cos 50°)/(tan 38°20')`


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


Given that sin θ = `a/b` then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×