Advertisements
Advertisements
Question
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
Solution
L.H.S = `(sin"A" - cos "A" + 1)/(sin "A" + cos "A" - 1)`
`= (tan "A" -1 + sec"A")/(tan "A" + 1 - sec "A")` [Dividing numerator & denominator by cos A]
`= ((tan "A" + sec "A") -1)/((tan "A" - sec "A") + 1)`
`= ((tan "A" + sec"A") - 1(tan"A" - sec "A"))/((tan "A" + sec"A") + 1(tan"A" - sec "A"))`
`= ((tan^2 "A" + sec^2 "A") - (tan "A" - sec "A"))/ ((tan "A" + sec "A" + 1) - (tan "A" - sec "A"))`
`= (-1 - tan "A" + sec "A")/((tan "A" - sec "A" + 1)(tan "A" - sec "A"))`
`= -1/(tan "A" - sec "A")`
`= 1/(sec "A" - tan "A")`
LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`tan 27^circ/cot 63^circ`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
\[cot\theta \tan\left( 90° - \theta \right) - \sec\left( 90° - \theta \right)cosec\theta + \sqrt{3}\tan12° \tan60° \tan78° = 2\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
From the trigonometric table, write the values of cos 23°17'.
`(sin 40° + cos 50°)/(tan 38°20')`
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
Given that sin θ = `a/b` then cos θ is equal to ______.