English

Given that sin θ = ab then cos θ is equal to ______. - Mathematics

Advertisements
Advertisements

Question

Given that sin θ = `a/b` then cos θ is equal to ______.

Options

  • `b/sqrt(b^2 - a^2)`

  • `b/a`

  • `sqrt(b^2 - a^2)/b`

  • `a/sqrt(b^2 - a^2)`

MCQ
Fill in the Blanks

Solution

Given that sin θ = `"a"/"b"` then cos θ is equal to `underlinebb(sqrt(("b"^2 - "a"^2)/"b")`.

Explanation:

According to the question,

sin θ = `"a"/"b"`

We know, sin2 θ + cos2 θ = 1

sin2 A = 1 – cos2 A

sin A = `sqrt(1 - cos^2 "A")`

So, cos θ = `sqrt(1 - "a"^2/"b"^2)`

= `sqrt(("b"^2 - "a"^2)/"b"^2)`

= `sqrt(("b"^2 - "a"^2))/"b"`

Hence, cos θ = `sqrt(("b"^2 - "a"^2)/"b"`

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Standard (Board Sample Paper)

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Without using trigonometric tables, evaluate :

`("cosec"  42^circ)/sec 48^circ`


Without using trigonometric tables, prove that:

cos 81° − sin 9° = 0


Without using trigonometric tables, prove that:

cos275° + cos215° = 1


Without using trigonometric tables, prove that:

sin53° cos37° + cos53° sin37° = 1


Without using trigonometric tables, prove that:

tan48° tan23° tan42° tan67° = 1


Prove that:

sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1


Prove that:

\[\frac{\sin\theta  \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta  \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]


Prove that:

\[\frac{sin\theta  \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:

cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]


Prove that:

cos1° cos2° cos3° ... cos180° = 0


If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.


If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.


A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]


Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).


If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`


Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'


`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`


The maximum value of `1/(cosec alpha)` is ______.


Prove that:

`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×