Advertisements
Advertisements
Question
Given that sin θ = `a/b` then cos θ is equal to ______.
Options
`b/sqrt(b^2 - a^2)`
`b/a`
`sqrt(b^2 - a^2)/b`
`a/sqrt(b^2 - a^2)`
Solution
Given that sin θ = `"a"/"b"` then cos θ is equal to `underlinebb(sqrt(("b"^2 - "a"^2)/"b")`.
Explanation:
According to the question,
sin θ = `"a"/"b"`
We know, sin2 θ + cos2 θ = 1
sin2 A = 1 – cos2 A
sin A = `sqrt(1 - cos^2 "A")`
So, cos θ = `sqrt(1 - "a"^2/"b"^2)`
= `sqrt(("b"^2 - "a"^2)/"b"^2)`
= `sqrt(("b"^2 - "a"^2))/"b"`
Hence, cos θ = `sqrt(("b"^2 - "a"^2)/"b"`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate :
`("cosec" 42^circ)/sec 48^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
sin θ cos (90° - θ ) + sin (90° - θ) cos θ = 1
Prove that:
\[\frac{\sin\theta \cos(90^\circ - \theta)\cos\theta}{\sin(90^\circ- \theta)} + \frac{\cos\theta \sin(90^\circ - \theta)\sin\theta}{\cos(90^\circ - \theta)}\]
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
If 5 tan θ = 4, find the value of `(5 sin θ + 3 cos θ)/(5 sin θ + 2 cos θ)`
Using trigonometric table evaluate the following:
sin 64°42' + cos 42°20'
`(sin 20°50' + tan 67°40')/(cos 32°20' - sin 15°10')`
The maximum value of `1/(cosec alpha)` is ______.
Prove that:
`(cos^2 "A")/(cos "A" - sin "A") + (sin "A")/(1 - cot "A")` = sin A + cos A