Advertisements
Advertisements
प्रश्न
Without using trigonometric tables, evaluate :
`cot 38^circ/tan 52^circ`
उत्तर
`cot 38^circ/tan 52^circ`
= `cot (90^circ - 52^circ)/tan 52^circ`
= `tan 52^circ/tan 52^circ` [`because` tan (90-θ) = cot θ]
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
tan266° − cot224° = 0
Without using trigonometric tables, prove that:
sin53° cos37° + cos53° sin37° = 1
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
cos1° cos2° cos3° ... cos180° = 0
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
If sec 4 A = cosec (A − 15°), where 4 A is an acute angle, find the value of A.
Prove the following:
`1/(1+sin^2theta) + 1/(1+cos^2theta) + 1/(1+sec^2theta) + 1/(1+cosec^2theta) = 2`
Solve : Sin2θ - 3sin θ + 2 = 0 .
Solve the following equation: `(cos^2θ - 3 cosθ + 2)/sin^2θ` = 1.
Given that sin θ = `a/b` then cos θ is equal to ______.
The maximum value of `1/(cosec alpha)` is ______.