Advertisements
Advertisements
Question
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Solution
`3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`
= `3(sin(90° - 18°))/(cos 18°) - sec(90° - 58°)/("cosec"58°)`
= `3(cos 18°)/(cos 18°) - ("cosec"58°)/("cosec"58°)`
= 3 - 1
= 2
APPEARS IN
RELATED QUESTIONS
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find sine of 10° 20' + 20° 45'
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
In the following figure the value of cos ϕ is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
`(sin 75^circ)/(cos 15^circ)` = ?