Advertisements
Advertisements
प्रश्न
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.
उत्तर
Consider the figure below :
sin B = `(8)/(10) = (4)/(5)`
i.e.`"perpendicular"/"hypotenuse" = "AD"/"AB" = (4)/(5)`
Therefore if length of perpendicular = 4x, length of hypotenuse = 5x
Since
AD2 + BD2 = AB2 ...[ Using Pythagoras Theorem ]
(5x)2 – (4x)2 = BD2
BD2 = 9x2
∴ BD = 3x
Now
BD = 9
3x = 9
x = 3
Therefore
AB = 5x
= 5 x 3
= 15 cm
And
AD= 4x
= 4 x 3
= 12 cm
Again
tan C = `(1)/(1)`
i.e.`"perpendicular"/"base" = "AD"/"DC" = (1)/(1)`
Therefore if length of perpendicular = x, length of base = x
Since
AD2 + DC2 = AC2 ...[ Using Pythagoras Theorem ]
(x)2 + (x)2 = AC2
AC2 = 2x2
∴ AC = `sqrt2x`
Now
AD = 12
x = 12
Therefore
DC = x
= 12 cm
And
AC = `sqrt2`
= `sqrt2` x 12
= 12`sqrt2"cm"`
APPEARS IN
संबंधित प्रश्न
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C