Advertisements
Advertisements
Question
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
Solution
LHS = `((1-tan^2theta))/((1+tan^2theta))`
=` ((1-1/cot^2theta))/((1+1/cot^2theta))`
=`((cot^2theta-1)/(cot^2theta))/(((cot^2theta+1)/(cot^2theta)))`
=`(cot^2theta-1)/(cot^2theta+1)`
=`((4/3)^2-1)/((4/3)^2 +1)` (𝐴𝑠, 3 cot 𝜃 = 4 𝑜𝑟 cot 𝜃 =`4/3`)
=`(16/9-1)/(16/9+1)`
=`(((16-9)/9))/(((16+9)/9))`
=`((7/9))/((25/9))`
= `7/25`
𝑅𝐻𝑆 = `(cos^2 theta − sin^2 theta)`
=`((cos^2theta - sin^2 theta))/1`
=`(((cos^2theta-sin^2theta)/(sin^2theta)))/((1/(sin^2theta)))`
=`((cos^2theta)/(sin^2theta)-(sin^2theta)/(sin^2theta))/(cosec^2theta)`
=`((cot^2theta-1))/((cot^2theta+1))`
=`([(4/3)^2-1])/([(4/3)^2+1])`
=`((16/9-1/1))/((16/9+1/1))`
=`(((16-9)/9))/(((16+9)/9))`
=`((7/9))/((25/9))`
=`7/25`
Since, LHS = RHS
Hence, verified.
APPEARS IN
RELATED QUESTIONS
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
Evaluate:
cos450 cos300 + sin450 sin300
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`