Advertisements
Advertisements
Question
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`
Solution
we are given that BD : DC = 1 : 2 as AD divides BC in the ratio 1 : 2. i.e BD = x,DC = 2x ⇒ BC = 3x
(i) `("tan"∠"BAC")/("tan"∠"BAD")`
= `("BC"/"AB")/("BD"/"AB")`
= `"BC"/"BD"`
= `(3x)/x`
= 3
(ii) `("cot"∠"BAC")/("cot"∠"BAD")`
= `("AB"/"BC")/("AB"/"BD")`
= `"BD"/"BC"`
= `x/(3x)`
= `(1)/(3)`.
APPEARS IN
RELATED QUESTIONS
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A