Advertisements
Advertisements
Question
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
Solution
Consider the diagram below :
sec A = `(29)/(21)`
i.e. `"hypotenuse"/"base" = (29)/(21) ⇒ "AC"/"AB" = (29)/(21)`
Therefore if length of AB = 21x , length of AC = 29x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(21x)2 + BC2 = ( 29x)2
BC2 = 841x2 – 441x2 =400x2
BC = 20x ...(perpendicular )
Now
sin A = `"perpendicular"/"hypotenuse" = (20x)/(29x) = 20/29`
tan A = `"perpendicular"/"base" = (20x)/(21x) = 20/21`
Therefore
sin A – `1/ tan "A"`
= `(20)/(29) – 1/(20/21)`
= `(20)/(29) – 21/20`
= – `(209)/(580)`
APPEARS IN
RELATED QUESTIONS
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If ЁЭЬГ = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
Use the information given in the following figure to evaluate:
`(10)/sin x + (6)/sin y – 6 cot y`.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A