Advertisements
Advertisements
प्रश्न
Evaluate:
cos450 cos300 + sin450 sin300
उत्तर
On substituting the values of various T-ratios, we get:
cos450 cos300 + sin450 sin300
`=(1/sqrt(2) xxsqrt(3)/2 +1/sqrt(2) xx1/2) = (sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2)) )= ((sqrt(3)+1)/(2sqrt(2)))`
APPEARS IN
संबंधित प्रश्न
If 8 tan A = 15, find sin A – cos A.
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
tan 30° × tan ______° = 1
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C