Advertisements
Advertisements
प्रश्न
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
उत्तर
Consider the figure :
sin A = cos A
tan A = `(1)/(1)`
i.e.`"perpendicular"/"base" = "BC"/"AB" = (1)/(1)`
Therefore if length of perpendicular = x, length of base = x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem]
(x)2 + (x)2 = AC2
AC2 = 2x2
∴ AC = `sqrt2x`
Now
sec A = `"AC"/"AB" = sqrt2`
Therefore
2 tan2 A – 2sec2 A + 5
= 2(1)2 –2 (`sqrt2`)2 + 5
= 2 – 4 + 5
= 3
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
Given q tan A = p, find the value of:
`("p" sin "A" – "q" cos "A")/("p" sin "A" + "q" cos "A")`.
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`
Evaluate: `5/(cot^2 30^circ) + 1/(sin^2 60^circ) - cot^2 45^circ + 2 sin^2 90^circ`.