Advertisements
Advertisements
Question
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
Solution
`sec theta = "โ๐ฆ๐๐๐ก๐๐๐ข๐ ๐"/"๐๐๐๐๐๐๐๐ก ๐ ๐๐๐" = 13/5`
Now consider a right-angled Δle ABC
By applying Pythagoras theorem
๐ด๐ถ2 = ๐ด๐ต2 + ๐ต๐ถ2
169 = ๐ฅ2 + 25
๐ฅ2 = 169 − 25 = 144
๐ฅ = 12
`cos theta = 1/sec theta = (1/13)/5 = 5/13`
`tan theta = "๐๐๐๐๐ ๐๐ก๐ ๐ ๐๐๐"/"๐๐๐๐๐๐๐๐ก ๐ ๐๐๐" = 12/5`
`sin theta = "๐๐๐๐๐ ๐๐ก๐ ๐ ๐๐๐"/"โ๐ฆ๐๐๐ก๐๐๐ข๐ ๐" = 12/13`
`cosect theta = 1/sin theta = 1/(12/13) = 13/12`
`sec theta = 1/cos theta = 1/(5/13) = 13/5`
`cot theta = 1/tan theta = 1/(12/5) = 5/12`
APPEARS IN
RELATED QUESTIONS
In Given Figure, find tan P – cot R.
If sin A = `3/4`, calculate cos A and tan A.
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
Find the value of x in the following :
`2sin 3x = sqrt3`
If `sqrt2 sin (60° – α) = 1` then α is ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.