Advertisements
Advertisements
Question
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
Solution
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°` ....(i)
By trigonometric ratios we have
`sin 30^@ = 1/2` `cos 45^@ = 1/sqrt2` `tan 30^2 = 1/sqrt3` `sin 90^@ = 1 cos 90^@ = 0 cos 0^@ = 1`
By substituting above values in (i), we get
`[1/2]^2 . [1/sqrt2]^2 + 4[1/sqrt3]^2 + 1/2[1]^2 - 2[0]^2 + 1/24 [1]^2`
`1/4.1/2 + 4/ 1/3 + 1/2 - 0 + 1/24`
`1/8 + 4/3 + 1/2 + 1/24 = 48/24 = 2`
APPEARS IN
RELATED QUESTIONS
State whether the following are true or false. Justify your answer.
sin θ = `4/3`, for some angle θ.
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
`sin 30^2/sin 45^@ + tan 45^@/sec 60^@ - sin 60^@/cot 45^@ - cos 30^@/sin 90^@`
Find the value of x in the following :
`sqrt3 sin x = cos x`
If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.
What will be the value of sin 45° + `1/sqrt(2)`?
If sec θ = `1/2`, what will be the value of cos θ?
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.