Advertisements
Advertisements
Question
If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
Solution 1
Let us consider a right triangle ABC, right-angled at point B.
cot theta = `7/8`
If BC is 7k, then AB will be 8k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC, we obtain
AC2 = AB2 + BC2
= (8k)2 + (7k)2
= 64k2 + 49k2
= 113k2
AC = `sqrt113k`
`sin theta = (8k)/sqrt(113k) = 8/sqrt(113)`
`cos theta = (7k)/sqrt(113k) = 7/sqrt113`
`((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ)) = (1-sin^2θ)/(1-cos^2θ)`
= `(1-(8/sqrt113)^2)/(1-(7/sqrt(113))^2)`
= `(1-64/113) /(1-49/113)`
= `(49/113)/(64/113)`
= `49/64`
Solution 2
`cot theta = 7/8`
`((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`
= `(1 - sin^2 theta)/(1 - cos^2 theta)` ...[∵ (a + b) (a – b) = a2 − b2] a = 1, b = sin 𝜃
We know that sin 2𝜃 + cos2𝜃 = 1
1 − sin2𝜃 = cos2𝜃 = cos2𝜃
1 − cos2𝜃 = sin2 𝜃
= `(cos^2 theta)/(sin^2 theta)`
= `cot^2 theta`
= `(cot theta)^2`
= `[7/8]^2`
= `49/64`
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
If sin A = `3/4`, calculate cos A and tan A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
Find the value of x in the following :
`2 sin x/2 = 1`
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.
If sec θ = `1/2`, what will be the value of cos θ?
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.