Advertisements
Advertisements
प्रश्न
If sin A = `3/4`, calculate cos A and tan A.
उत्तर
Let ΔABC be a right-angled triangle, right-angled at point B.
Given that,
sin A = `3/4`
`("BC")/("AC") = 3/4`
Let BC be 3k.
Therefore, AC will be 4k, where k is a positive integer.
Applying Pythagoras theorem in ΔABC, we obtain
AC2 = AB2 + BC2
(4k)2 = AB2 + (3k)2
16k2 − 9k2 = AB2
7k2 = AB2
AB = `sqrt7k`
cos A = `("Side adjacent to ∠A")/"Hypotenuse"`
∴ cos A = `("AB")/("AC")`
= `sqrt(7k)/(4k)`
= `sqrt7/4`
tan A = `("Side adjacent to ∠A")/("Side adjacent to ∠A")`
= `("BC")/("AB")`
= `(3k)/(sqrt7k)`
= `3/sqrt7`
APPEARS IN
संबंधित प्रश्न
In Given Figure, find tan P – cot R.
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cos theta = 12/2`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
What will be the value of sin 45° + `1/sqrt(2)`?
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.