Advertisements
Advertisements
प्रश्न
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
उत्तर
As , `sin theta = 1/2 `
So , `cosec theta = 1/ sin theta = 2 ........(i)`
Now ,
`3 cot ^2 theta + 3 `
= `3 ( cot^2 theta + 1)`
=`3 cosec^2 theta`
=` 3(2)^2 [ Using (i)]`
=3(4)
=12
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Choose the correct alternative:
tan (90 – θ) = ?
Prove that cot2θ × sec2θ = cot2θ + 1
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.