Advertisements
Advertisements
प्रश्न
If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tanθ.
उत्तर
We have,
\[\sin^2 \theta + \cos^2 \theta = 1\]
\[ \Rightarrow \left( \frac{7}{25} \right)^2 + \cos^2 \theta = 1\]
\[ \Rightarrow \cos^2 \theta = 1 - \frac{49}{625} = \frac{625 - 49}{625} = \frac{576}{625}\]
\[ \Rightarrow \cos\theta = \sqrt{\frac{576}{625}} = \frac{24}{25}\]
Now,
\[\tan\theta = \frac{\sin\theta}{\cos\theta}\]
\[ \Rightarrow \tan\theta = \frac{\frac{7}{25}}{\frac{24}{25}}\]
\[ \Rightarrow \tan\theta = \frac{7}{24}\]
Thus, the values of cosθ and tanθ are \[\frac{24}{25}\] and \[\frac{7}{24}\], respectively.
संबंधित प्रश्न
If \[\tan \theta = \frac{3}{4}\], find the values of secθ and cosθ
If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.
Prove that:
cos2θ (1 + tan2θ)
Prove that:
Prove that:
Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`
Prove that:
If \[\tan\theta + \frac{1}{\tan\theta} = 2\], then show that \[\tan^2 \theta + \frac{1}{\tan^2 \theta} = 2\]
Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?
Choose the correct alternative answer for the following question.
cosec 45° =?
Prove the following.
sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following.
Prove the following:
sec6x – tan6x = 1 + 3sec2x × tan2x
Prove the following.
\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]
Prove the following.
Choose the correct alternative:
sinθ × cosecθ =?
If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.
Show that:
`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`