मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Choose the Correct Alternative Answer for the Following Question. Cosec 45° = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Choose the correct alternative answer for the following question.
cosec 45° =?

पर्याय

  • \[\frac{1}{2}\]

  • \[\sqrt{2}\] 

  • \[\frac{\sqrt{3}}{2}\] 

  • \[\frac{2}{\sqrt{3}}\] 

MCQ

उत्तर

\[cosec45^\circ = \sqrt{2}\]

Hence, the correct answer is \[\sqrt{2}\] .

shaalaa.com
Application of Trigonometry
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 6 Trigonometry
Problem Set 6 | Q 1.2 | पृष्ठ १३८

संबंधित प्रश्‍न

If \[\sin\theta = \frac{7}{25}\], find the values of cosθ and tan​θ.


If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If tanθ = 1 then, find the value of

`(sinθ + cosθ)/(secθ + cosecθ)`


Prove that:

cos2θ (1 + tan2θ)


Prove that:

\[\sqrt{\frac{1 - \sin\theta}{1 + \sin\theta}} = \sec\theta - \tan\theta\]

Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that: `1/"sec θ − tan θ" = "sec θ + tan θ"`


Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
sin \[\theta\] cosec \[\theta\]= ?


Prove the following.
(secθ + tanθ) (1 – sinθ) = cosθ


Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]


Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×