मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove the following. tan⁡θsec⁡θ+1=sec⁡θ−1tan⁡θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove the following.

\[\frac{\tan\theta}{\sec\theta + 1} = \frac{\sec\theta - 1}{\tan\theta}\]

बेरीज

उत्तर

\[\frac{\tan\theta}{\sec\theta + 1}\]

\[ = \frac{\tan\theta}{\sec\theta + 1} \times \frac{\sec\theta - 1}{\sec\theta - 1}\]

\[ = \frac{\tan\theta\left( \sec\theta - 1 \right)}{\sec^2 \theta - 1}\]

\[ = \frac{\tan\theta\left( \sec\theta - 1 \right)}{\tan^2 \theta} \]       ...(1 + tan2θ = sec2θ)

\[ = \frac{\sec\theta - 1}{\tan\theta}\]

shaalaa.com
Application of Trigonometry
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Problem Set 6 [पृष्ठ १३८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 6 Trigonometry
Problem Set 6 | Q 5.08 | पृष्ठ १३८

संबंधित प्रश्‍न

If \[\tan \theta = \frac{3}{4}\], find the values of sec​θ and cos​θ


If \[\cot\theta = \frac{40}{9}\], find the values of cosecθ and sinθ.


If 5 secθ – 12 cosecθ = 0, find the values of secθ, cosθ, and sinθ.


Prove that:

(secθ - cosθ)(cotθ + tanθ) = tanθ.secθ.


Prove that:

\[\cot\theta + \tan\theta = cosec\theta \sec\theta\]

Prove that:

\[\sec\theta + \tan\theta = \frac{\cos\theta}{1 - \sin\theta}\]

Prove that:

\[\sec^4 A\left( 1 - \sin^4 A \right) - 2 \tan^2 A = 1\]

Choose the correct alternative answer for the following question.
cosec 45° =?


Choose the correct alternative answer for the following question.

When we see at a higher level, from the horizontal line, angle formed is ........
 

Prove the following.
cot2θ – tan2θ = cosec2θ – sec2θ


Prove the following.

\[\frac{1}{1 - \sin\theta} + \frac{1}{1 + \sin\theta} = 2 \sec^2 \theta\]

Prove the following.

\[\frac{\tan^3 \theta - 1}{\tan\theta - 1} = \sec^2 \theta + \tan\theta\]

If sinθ = `8/17`, where θ is an acute angle, find the value of cos θ by using identities.


Show that: 

`sqrt((1-cos"A")/(1+cos"A"))=cos"ecA - cotA"`


Prove that: (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ

Proof: L.H.S. = (sec θ – cos θ) (cot θ + tan θ)

= `(1/square - cos θ) (square/square + square/square)` ......`[∵ sec θ = 1/square, cot θ = square/square and tan θ = square/square]`

= `((1 - square)/square) ((square + square)/(square  square))`

= `square/square xx 1/(square  square)`  ......`[(∵ square + square = 1),(∴ square = 1 - square)]`

 = `square/(square  square)`

= tan θ.sec θ

= R.H.S.

∴ L.H.S. = R.H.S.

∴ (sec θ – cos θ) (cot θ + tan θ) = tan θ.sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×