Advertisements
Advertisements
Question
Evaluate: cos2 25° - sin2 65° - tan2 45°
Solution
cos2 25° - sin2 65° - tan2 45°
= [cos(90° - 65°)]2 - sin2 65° - (tan 45°)2
= sin2 65° - sin2 65° - (1)2
= 0 - 1
= - 1.
APPEARS IN
RELATED QUESTIONS
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If the angle θ = –45° , find the value of tan θ.
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.