Advertisements
Advertisements
Question
Evaluate: `((sin 77°)/(cos 13°))^2 + ((cos 77°)/(sin 13°))^2 - 2 cos^2 45°`
Sum
Solution
`((sin 77°)/(cos 13°))^2 + ((cos 77°)/(sin 13°))^2 - 2 cos^2 45°`
= `(sin(90° - 13°)/(cos 13°))^2 + (cos(90° - 13°)/(sin 13°))^2 - 2 (cos 45°)^2`
= `((cos 13°)/(cos 13°))^2 + ((sin 13°)/(sin 13°))^2 - 2 (1/sqrt(2))^2`
= `(1)^2 + (1)^2 - 2 xx (1)/(2)`
= 1 + 1 - 1
= 1
shaalaa.com
Complementary Angles for Sine ( Sin ) and Cosine ( Cos )
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Evaluate : `(cos22°)/(sin 68°)`
Evaluate: sin2 40° - cos2 50°
Evaluate: sin 15° cos 15° - cos 75° sin 75°
Evaluate: sin 42° sin 48° - cos 42° cos 48°
Evaluate: sin (90° - A) sin A - cos (90° - A) cos A
Evaluate: sin2 35° - cos2 55°
Show that: sin 42° sec 48° + cos 42° cosec 48° = 2.
For triangle ABC, show that:
`sin (("A + B")/(2)) = cos "C"/(2)`
Evaluate: `(cos70°)/(sin20°) + (cos59°)/(sin 31°) - 8 sin^2 30°`