Advertisements
Advertisements
Question
For triangle ABC, show that:
`sin (("A + B")/(2)) = cos "C"/(2)`
Sum
Solution
We know that for a triangle ΔABC
A + B + C = 180°
A + B = 180° - C
L.H.S. = sin `("A"+"B")/2`
= sin `(180- "C")/2`
= sin `(180/2-"C"/2)`
= sin `(90-"C"/2)`
= cos `("C"/2)`
shaalaa.com
Complementary Angles for Sine ( Sin ) and Cosine ( Cos )
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Evaluate : `(cos22°)/(sin 68°)`
Evaluate: sin2 40° - cos2 50°
Evaluate: sin 15° cos 15° - cos 75° sin 75°
Evaluate: sin 42° sin 48° - cos 42° cos 48°
Evaluate: sin (90° - A) sin A - cos (90° - A) cos A
Evaluate: sin2 35° - cos2 55°
Evaluate: `((sin 77°)/(cos 13°))^2 + ((cos 77°)/(sin 13°))^2 - 2 cos^2 45°`
Show that: sin 42° sec 48° + cos 42° cosec 48° = 2.
Evaluate: `(cos70°)/(sin20°) + (cos59°)/(sin 31°) - 8 sin^2 30°`