Advertisements
Advertisements
प्रश्न
If tanθ= cotθ and 0°≤ θ ≤ 90°, find the value of 'θ'.
उत्तर
tanθ = cotθ
⇒ tanθ = `(1)/tanθ`
⇒ tan2 θ = 1
⇒ tanθ = 1
⇒ θ = 45°.
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If sin x + cos y = 1 and x = 30°, find the value of y
Solve the following equation for A, if sec 2A = 2
Calculate the value of A, if (tan A - 1) (cosec 3A - 1) = 0
Find the magnitude of angle A, if 2 cos2 A - 3 cos A + 1 = 0
Find the magnitude of angle A, if 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A
If θ = 30°, verify that: sin 3θ = 4sinθ . sin(60° - θ) sin(60° + θ)
If θ < 90°, find the value of: sin2θ + cos2θ
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: tan(78° + θ) + cosec(42° + θ) - cot(12° - θ) - sec(48° - θ)