Advertisements
Advertisements
प्रश्न
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
उत्तर
Since θ <90°,
Consider θ = 45°
∴ `tan^2 θ - (1)/cos^2θ`
= `tan^2 45° - (1)/(cos^2 45°)`
= `(1)^2 - (1)/(1/sqrt(2))^2`
= `1 - (1)/(1/2)`
= 1 - 2
= -1.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if sin 3 A = `sqrt3 /2`
Solve for x : cos `(x/(2)+10°) = (sqrt3)/(2)`
Find the value of 'A', if (1 - cosec A)(2 - sec A) = 0
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Find the value of: `sqrt((1 - sin^2 60°)/(1 + sin^2 60°)` If 3 tan2θ - 1 = 0, find the value
a. cosθ
b. sinθ
Find the value of 'x' in each of the following:
If tan x° = `(5)/(12) . tan y° = (3)/(4)` and AB = 48m; find the length CD.
Evaluate the following: sin28° sec62° + tan49° tan41°