Advertisements
Advertisements
प्रश्न
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
उत्तर
`sec(θ/2 + 10°) = (2)/sqrt(3)`
⇒ `sec(θ/2 + 10°)` = sec 30°
⇒ `θ/(2) + 10°` = 30°
⇒ `θ/(2)` = 20°
⇒ θ = 40°.
APPEARS IN
संबंधित प्रश्न
State for any acute angle θ whether sin θ increases or decreases as θ increases
Solve for x : sin (x + 10°) = `(1)/(2)`
Solve for x : 3 tan2 (2x - 20°) = 1
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
The perimeter of a rhombus is 100 cm and obtuse angle of it is 120°. Find the lengths of its diagonals.
Evaluate the following: sin28° sec62° + tan49° tan41°
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`
Evaluate the following: sin35° sin45° sec55° sec45°
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)