Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
उत्तर
tan A – 2 cos A tan A + 2 cos A – 1 = 0
tan A – 2 cos A tan A = 1 – 2 cos A
tan A ( 1 – 2 cos A ) – (1 – 2 cos A )= 0
(1 – 2 cos A) (tan A – 1) = 0
1 – 2 cos A = 0 and tan A – 1 = 0
cos A = `(1)/(2)` and tan A = 1
A = 60° and A = 45°
APPEARS IN
संबंधित प्रश्न
If 4 sin2 θ - 1= 0 and angle θ is less than 90°, find the value of θ and hence the value of cos2 θ + tan2θ.
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Evaluate the following: `((sin3θ - 2sin4θ))/((cos3θ - 2cos4θ))` when 2θ = 30°
If θ < 90°, find the value of: `tan^2θ - (1)/cos^2θ`
If `sqrt(3)`sec 2θ = 2 and θ< 90°, find the value of θ
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
Find the value 'x', if:
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: cos39° cos48° cos60° cosec42° cosec51°
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ