Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if tan A - 2 cos A tan A + 2 cos A - 1 = 0
उत्तर
tan A – 2 cos A tan A + 2 cos A – 1 = 0
tan A – 2 cos A tan A = 1 – 2 cos A
tan A ( 1 – 2 cos A ) – (1 – 2 cos A )= 0
(1 – 2 cos A) (tan A – 1) = 0
1 – 2 cos A = 0 and tan A – 1 = 0
cos A = `(1)/(2)` and tan A = 1
A = 60° and A = 45°
APPEARS IN
संबंधित प्रश्न
If 2 sin x° - 1 = 0 and x° is an acute angle; find:
- sin x°
- x°
- cos x° and tan x°.
If sin 3A = 1 and 0 < A < 90°, find sin A
If 2 cos (A + B) = 2 sin (A - B) = 1;
find the values of A and B.
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Find the value 'x', if:
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Prove the following: sin58° sec32° + cos58° cosec32° = 2
If A + B = 90°, prove that `(tan"A" tan"B" + tan"A" cot"B")/(sin"A" sec"B") - (sin^2"B")/(cos^2"A")` = tan2A