Advertisements
Advertisements
प्रश्न
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
उत्तर
a. In right ΔAEB,
sin60° = `"AE"/"AB"`
⇒ `sqrt(3)/(2) = "AE"/(8)`
⇒ AE = `4sqrt(3)"cm"`
Now,
BE2
= AB2 - AE2
= `8^2 - (4sqrt(3))^2`
= 64 - 48
= 16
⇒ BE = 4cm
b. EC
= BC - BE
= 24 - 4
= 20cm
Now,
In right ΔAEC,
AC2
= AE2 + EC2
= `(4sqrt(3))^2 + 20^2`
= 48 + 400
= 448
⇒ AC = `8sqrt(7)"cm"`.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for A, if 2cos2A = 1
Solve the following equation for A, if `sqrt3` cot 2 A = 1
Find the value of 'A', if `sqrt(3)cot"A"` = 1
Find the value of 'A', if cot 3A = 1
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
Find the value of 'x' in each of the following:
Find the value 'x', if:
Express each of the following in terms of trigonometric ratios of angles between 0° and 45°: cos84° + cosec69° - cot68°
Evaluate the following: `(sin0° sin35° sin55° sin75°)/(cos22° cos64° cos58° cos90°)`
If cosθ = sin60° and θ is an acute angle find the value of 1- 2 sin2θ