Advertisements
Advertisements
प्रश्न
Find the magnitude of angle A, if 2 sin A cos A - cos A - 2 sin A + 1 = 0
उत्तर
2 sin A cos A – cos A – 2 sin A + 1 = 0
2 sin A cos A – cos A = 2 sin A – 1
(2 sin A – 1) cos A – (2 sin A – 1) = 0
(2 sin A – 1) = 0 and cos A = 1
sin A =`(1)/(2)` and cos A = cos 0°
A = 30° and A = 0°
APPEARS IN
संबंधित प्रश्न
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
If A = 30°, verify that cos2θ = `(1 - tan^2 θ)/(1 + tan^2 θ)` = cos4θ - sin4θ = 2cos2θ - 1 - 2sin2θ
In the given figure, ∠B = 60°, ∠C = 30°, AB = 8 cm and BC = 24 cm. Find:
a. BE
b. AC
Find the value 'x', if:
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: cosec 54° - sec 36°
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
Evaluate the following: `(3sin^2 40°)/(4cos^2 50°) - ("cosec"^2 28°)/(4sec^2 62°) + (cos10° cos25° cos45° "cosec"80°)/(2sin15° sin25° sin45° sin65° sec75°)`
If A, B and C are interior angles of ΔABC, prove that sin`(("A" + "B")/2) = cos "C"/(2)`