Advertisements
Advertisements
Question
Find the magnitude of angle A, if 2 cos2 A - 3 cos A + 1 = 0
Solution
2 cos2 A – 3 cos A + 1 = 0
2 cos2 A – cos A - 2cosA +1 = 0
cos A(2cos A – 1) – (2 cos A – 1) = 0
( 2 cosA – 1) (cos A – 1) = 0
2 cos A – 1 = 0 aand cos A – 1 = 0
cos A = `(1)/(2)` and cos A = 1
A = 60° and A = 0°
APPEARS IN
RELATED QUESTIONS
Solve the following equation for A, if 2cos2A = 1
Find the value of 'A', if (2 - cosec 2A) cos 3A = 0
Solve for 'θ': `sec(θ/2 + 10°) = (2)/sqrt(3)`
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Evaluate the following: `(sin62°)/(cos28°)`
Evaluate the following: `(2sin28°)/(cos62°) + (3cot49°)/(tan41°)`
If cos3θ = sin(θ - 34°), find the value of θ if 3θ is an acute angle.
If sin(θ - 15°) = cos(θ - 25°), find the value of θ if (θ-15°) and (θ - 25°) are acute angles.
Prove the following: tanθ tan(90° - θ) = cotθ cot(90° - θ)
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ