Advertisements
Advertisements
प्रश्न
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
उत्तर
sin 3A = 1
sin 3A = sin90°
3A = 90°
A = 30°
`tan^2A – (1)/(cos^2"A") = tan^2 30° – (1)/(cos^2 30°)`
= `(1/sqrt3)^2 – (1)/(sqrt3/2)^2`
= `(1)/(3) – (4)/(3)`
= `(–3)/(3)`
= – 1
APPEARS IN
संबंधित प्रश्न
If sin 3A = 1 and 0 < A < 90°, find sin A
In ΔABC, ∠B = 90° , AB = y units, BC = `(sqrt3)` units, AC = 2 units and angle A = x°, find:
- sin x°
- x°
- tan x°
- use cos x° to find the value of y.
If 3 tan A - 5 cos B = `sqrt3` and B = 90°, find the value of A
Solve for x : cos (2x - 30°) = 0
Solve for 'θ': `sin θ/(3)` = 1
If θ = 30°, verify that: 1 - sin 2θ = (sinθ - cosθ)2
Find the value of 'x' in each of the following:
Find the value of 'x' in each of the following:
Evaluate the following: `(sec32° cot26°)/(tan64° "cosec"58°)`
Evaluate the following: `(tan42°)/(cot48°) + (cos33°)/(sin57°)`