Advertisements
Advertisements
प्रश्न
If sin 3A = 1 and 0 < A < 90°, find `tan^2A - (1)/(cos^2 "A")`
उत्तर
sin 3A = 1
sin 3A = sin90°
3A = 90°
A = 30°
`tan^2A – (1)/(cos^2"A") = tan^2 30° – (1)/(cos^2 30°)`
= `(1/sqrt3)^2 – (1)/(sqrt3/2)^2`
= `(1)/(3) – (4)/(3)`
= `(–3)/(3)`
= – 1
APPEARS IN
संबंधित प्रश्न
If sin 3A = 1 and 0 < A < 90°, find sin A
If 4 cos2 x = 3 and x is an acute angle;
find the value of :
(i) x
(ii) cos2 x + cot2 x
(iii) cos 3x (iv) sin 2x
Solve the following equation for A, if 2 sin 3 A = 1
Solve for x : sin2 x + sin2 30° = 1
Find the value of 'A', if 2 sin 2A = 1
Solve for 'θ': `sin θ/(3)` = 1
In the given figure, PQ = 6 cm, RQ = x cm and RP = 10 cm, find
a. cosθ
b. sin2θ- cos2θ
c. Use tanθ to find the value of RQ
If ΔABC is a right triangle such that ∠C = 90°, ∠A = 45° and BC =7units, find ∠B, AB and AC.
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Evaluate the following: `(sin36°)/(cos54°) + (sec31°)/("cosec"59°)`