Advertisements
Advertisements
प्रश्न
Evaluate the following: sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
उत्तर
sin(35° + θ) - cos(55° - θ) - tan(42° + θ) + cot(48° - θ)
= sin[90° - (55° - θ)] - cos(55° - θ) - tan[90° - (48° - θ)] + cot(48° - θ)
= cos(55° - θ) - cos(55° - θ) - cot(48° - θ) + cot(48° - θ)
= 0.
APPEARS IN
संबंधित प्रश्न
If sin x + cos y = 1 and x = 30°, find the value of y
Solve for x : cos2 30° + sin2 2x = 1
Find the value of 'A', if 2 cos A = 1
Solve for 'θ': cot2(θ - 5)° = 3
In the given figure, AB and EC are parallel to each other. Sides AD and BC are 1.5 cm each and are perpendicular to AB. Given that ∠AED = 45° and ∠ACD = 30°. Find:
a. AB
b. AC
c. AE
Find the value 'x', if:
Evaluate the following: `(cos34° cos35°)/(sin57° sin56°)`
Evaluate the following: sec16° tan28° - cot62° cosec74°
If secθ= cosec30° and θ is an acute angle, find the value of 4 sin2θ - 2 cos2θ.
Prove the following: `(tan(90° - θ)cotθ)/("cosec"^2 θ)` = cos2θ